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Abstract
We analyse here the thermodynamic behaviour of the thermal expansion
coefficient for a number of liquids. The purpose of this work is to provide
some general rules to develop equations of state models meeting the following
criteria: thermodynamic consistency, generality, predictive power and accuracy
to represent derived properties over wide ranges of pressure and temperature.
The liquids included into our analysis have been selected to meet two criteria:
(1) available experimental data over wide ranges of pressure and temperature
(from the melting point up to the critical point), and (2) liquids composed of
molecules with different geometries and interactions.

1. Introduction

The thermodynamic behaviour of the liquid state is by far the most difficult to understand
and to predict due to the inherent complexity of this state of matter, as a consequence of the
diversity of molecular interactions involved. A general observation is that liquids composed
of non-polar and polar molecules exhibit a quite distinct thermodynamic behaviour, especially
in those regions of the phase diagram where different molecular interactions are comparable in
energy. For instance, hydrogen bonding and molecular packing effects are often responsible
for anomalies in the expected thermodynamic behaviour of liquids.

Density variations along isothermal or isobaric paths are usually smooth functions of
pressure and temperature. However, properties such as the isothermal compressibility, κT ,
and the thermal expansion coefficient, αp, are quite sensitive to subtle changes in the density.
Although there exist several pressure–volume–temperature (p, V , T ) databases in tabulated
form, there is a general tendency to compile equation of state (EOS) results in algebraic form.
More often than would be desirable, the pressure and temperature dependencies of the derived
properties are imposed by the algebraic form of the EOS used to correlate the (p, V , T ) data,
resulting in a severe lost of information contained in the original results.
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The most important defect commonly found in current EOS models of liquids is their lack
of predictive power and their inability to represent with enough reliability the corresponding
derived properties. These limitations are often a direct consequence of the algebraic form
used to correlate experimental pressure–volume–temperature data. Therefore, any attempt to
develop a model of EOS of general applicability in liquids requires the inclusion of general
thermodynamic constraints. The obvious solution to this problem concerns the search for
simple but accurate phenomenological expressions to describe the general trends observed for
the derived properties, obtaining the desired EOS in (p, V , T ) variables by integration [1].
This is not an easy task though, because the number of exceptions found in the thermodynamic
behaviour of liquids exceeds the number of regularities. Consequently, many authors use
polynomials or extensions of simple EOS to fit a given experiment. Cubic EOSs derived
from the van der Waals equation are well-known examples for physicists, chemists and
engineers [2].

The analysis of EOS models in terms of derived properties such as αp or κT has interesting
advantages, since both are related to the first derivatives of the (p, V , T ) EOS, and both can be
accurately measured over wide ranges of pressure and temperature by different experimental
techniques [3]. Although a general discussion of the behaviour of these properties for different
types of liquids is still lacking, the pressure behaviour of the αp isotherms has been a matter of
interest due to the characteristic crossings observed for this property at high pressure. In this
regard, Randzio and Deiters [4] concluded that this is a key feature to examine EOS models.

To the best of our knowledge, a molecular interpretation of this observation has only
been attempted by Jenner and Millet [5, 6], and Randzio [7]. Jenner and Millet [5, 6] in their
studies on alkyl bromides found that (∂2V/∂T 2)p changes sign between 250 and 300 MPa.
These authors observed a curvature change of the isobars at a given pressure, the change being
attributed to the predominant influence of the anharmonicity of the intermolecular vibrations.
Randzio [7] also concluded that the intersections reflect a change in the effective intermolecular
potential with pressure due to anharmonic effects. Perhaps the most interesting consequence of
this conclusion is that any EOS based on a constant form of an intermolecular potential will be
unable to describe the thermodynamic behaviour of liquids. Thus, semiempirical approaches
are required to correlate experimental data so far.

The purpose of this paper is therefore to analyse the thermodynamic behaviour of the
thermal expansion coefficient for a number of liquids of different nature. The liquids included
in our analysis have been selected to meet two criteria:

(1) available experimental data over wide ranges of pressure and temperature (from the melting
point up to the critical point), and

(2) liquids composed of molecules with different geometries and interactions.

Our ultimate goal is to develop universal EOS models for liquids meeting the criteria of
thermodynamic consistency, predictive power and accuracy to represent derived properties
over wide ranges of pressure and temperature. We have not included liquid water in our
discussion because it records a number of irregularities that make it a difficult task finding
similarities with other liquids. However, the current approach raises some ideas to derive an
appropriate model for this important liquid within the same framework.

2. Results and discussion

2.1. Regularities in αp as a function of pressure and temperature

The pressure dependency of the thermal expansion coefficient of liquids has been extensively
studied from the experimental point of view. A general observation is that αp(p) always
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Figure 1. Thermal expansion coefficient as a function of pressure at different temperatures.
(a) Xenon [27]: 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280 and 289 K, and
(b) n-hexane [17]: 253.15, 303.15, 353.15, 403.15 and 453.15 K. The intersection regions have
been expanded in both figures.

decreases with pressure at constant temperature. A rather successful well-established
expression to represent the αp(p) isotherms was first proposed by Pruzan for n-hexane [8].
This expression is based on a spinodal hypothesis, and can be written in the general form:

αp = α∗(p − psp)
−1/2, (1)

where psp is the spinodal pressure and α∗ is a proportionality constant which drives the
divergence of the thermal expansion coefficient as the spinodal instability is approached.
Equation (1) has been used to correlate many experimental data, and its generality has been
checked by the present authors [9, 10].

There also exists a general agreement that the isotherms ofαp(p) intersect at high pressures
for many liquids, a characteristic feature first described by Bridgman [11]. Authors like Jenner
and Millet [5, 6] and Cutler et al [12], observed a similar behaviour in complex molecular
liquids. A number of recent studies, that will be referred to below, reveal that the crossover of
the αp(p) isotherms seems to be a general property of liquids, as summarized in table 1. A
general observation is such intersections usually occur at pressures below 200 MPa. Results
for xenon and n-hexane are reproduced in figure 1 as examples.

A number of expressions to account for the temperature dependence of the characteristic
parameters in equation (1) have been proposed. Most of them are based on the existence
of intersections of the αp(p) isotherms. For instance, the simplest assumption imposes
the existence of a single crossing point. Thus, carbon dioxide and n-butane experimental
results were successfully correlated in that way [13]. Later, Polzin and Weiss [14] used this
assumption to correlate their experiments in a number of liquids, although the relative narrow
range of temperatures covered in their experiments preclude further discussion. The same
conclusion can be extracted from our experiments on compressed tetramethylsilane [15] and
2, 3-dimethylbutane [16] using an expansion technique. Table 1 shows that many experimental
results cannot be correlated with this simple model, which indicates that a single crossing point
criterium is a too restrictive one. As an example, we shall analyse in detail previous results on
liquid n-hexane, because this is a well studied substance [17, 18].
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Table 1. Liquids studied in this work presenting intersections in αp(p) isotherms. Ttp (K) is
the triple point temperature, Tc (K) is the critical temperature, �T (K) indicates the range of
temperatures where experimental data are available, pmax (MPa) is the maximum pressure reached
in the experiment, and �p (MPa) indicates the pressure range where (∂αp/∂T )p = 0. References
are listed in the last column.

Liquid Ttp Tc �T pmax �p References

Argon 83.8 150.8 86–150 320 45–200 [25]
Krypton 115.8 209.4 120–220 373 86–105 [26]
Xenon 161.3 289.74 165–289 385 65–150 [27]
Ethylene 103.97 282.35 110–280 130 43–138 [28]
CF4 86.4 227.45 95–413 110 75–110 [29]
CHF3 110.0 299.1 126–332 100 85–101 [30]
CO2 216.56 304.21 220–304 400 125 [13]
CS2 161.3 549.4 246–353 400 200 [31]
Si(CH3)4 182 448.64 198–298 102 60 [15]
n-butane 134.8 425.16 135–425 400 110 [13]
n-hexane 177.8 507.8 238–472 762 36–112 [17, 18]
n-heptane 182.6 540.3 198–310 260 65–140 [32]
2, 3-dimethylbutane 144.6 500.3 208–298 100 40 [33]
Toluene 178.0 591.77 200–480 400 0–148 [23]
Methanol 175.5 512.6 195–305 100 0–80 [24]
Ethanol 158.37 513.9 193–333 280 0–100 [34]
1-hexanol 229.2 610.7 303–503 400 143–405 [35]
m-cresol 285.4 705.8 303–503 400 57–412 [36]
Quinoline 258.0 782.0 303–503 400 58–117 [37]
2, 2, 4-trimethylpentane 165.8 544.0 273–348 200 21 [14]
2, 2-dimethylbutane 173.3 488.8 244–313 200 24 [14]
1, 2-dibromotetrafluoroethane 163.0 487.8 253–369 200 24 [14]
1, 3, 5-trimethylbenzene 228.4 637.3 262–362 200 43 [14]
Sn(CH3)4 219.2 267–367 200 21 [14]
Pentafluorobenzonitrile 274.8 283–363 200 250 [14]
Cyclohexane 279.6 553.5 293–368 200 22 [14]
Benzene 278.7 562.2 293–352 200 71 [14]

Pruzan [17] fitted his αp(p, T ) measurements in the temperature range 239–472 K to
equation (1) using polynomials to account for the temperature variation of α∗ and psp. Randzio
et al [18] analysed Pruzan’s results together with their own αp experiments between 303
and 503 K using more complex functions for α∗(T ) and psp(T ). Although both sets of
experiments agree well in (p, V , T ) variables, there exist subtle differences in the derived
properties which are difficult to resolve in a usual representation of αp(p) along isotherms
(see figure 1). However, these differences are enhanced by plotting αp(T ) along isobaric
paths. Thus, from their respective expressions we have calculated the (p, T, αp) coordinates
that obey the condition (∂αp/∂T )p = 0. From their results, this condition yields a minimum
in αp(T ) of n-hexane. At high temperatures, the minimum shifts to higher pressures with
temperature in both cases. However, there exist important discrepancies at low temperatures,
as confirmed in figure 2. A further confirmation of this disagreement is observed when the
minima conditions are plotted against density instead of temperature, which evidences the
necessity of finding an adequate merit function for αp(p, T ) of general applicability.

We have performed a similar analysis for the liquids listed in table 1. These results point
to the interesting conclusion that the condition (∂αp/∂T )p = 0 may correspond either to a
minimum or a maximum in the αp isobars, an important issue that merits further discussion.
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Figure 2. Thermal expansion coefficient of n-hexane plotted against (a) temperature and (b) density.
Numbers indicate the following isobaric paths, in MPa: 0.1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 200, 300, 400 and 500 MPa. Curves are data from Randzio et al [18]. Symbols represent
the conditions where (∂αp/∂T )p = 0. Triangles have been calculated from data of Randzio et al
[18], and circles from the results of Pruzan [17].

Figure 3. Pressures (a) and reduced densities, (ρα/ρc) (b) where (∂αp/∂T )p = 0 as functions
of reduced temperature (T/Tc) for several liquids: 1: argon [25], 2: krypton [26], 3: xenon [27],
4: ethylene [28], 5: CF4 [29], 6: CHF3 [30], 7: carbon dioxide [13], 8: carbon disulfide [31], 9:
n-butane [13], 10: n-hexane [17], 11: n-hexane [18], 12: toluene [23], 13: 1-hexanol [35], 14:
m-cresol [36], 15: ethanol [34] and 16: methanol [24].

For instance, the intersections in compressed liquid xenon occurs at lower pressures as the
temperature increases, so maxima in αp are found in the stable liquid range, in contrast to the
previous example of n-hexane.
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Table 2. Pressure ranges (�p, in MPa) where the condition (∂αp /∂T )p = 0 is fulfilled from several
sources. Liquids are grouped together according to the existence of either minima or maxima (or
both) along isobaric αp paths. �Tred and �ρred are temperature and density ranges where maxima
or minima take place, they are given in reduced units, Tred = T/Tc and ρred = ρ/ρc , with Tc and
ρc the critical temperature and density, respectively.

Minima Maxima

Liquid �p �Tred �ρred �p �Tred �ρred Reference

Xenon 150–65 0.74–1.00 2.88–2.36 [27]
CHF3 101–85 0.95–1.14 2.61–2.36 [30]
n-heptane 140–65 0.43–0.57 3.45–3.11 [32]
1-hexanol 405–143 0.58–0.82 3.47–2.91 [35]
m-cresol 412–57 0.53–0.71 3.17–2.60 [36]
Argon 45–200 0.65–0.84 2.71–2.94 [25]
n-hexane 36–112 0.47–0.93 3.10–2.76 [17, 18]
Toluene 0–148 0.35–0.81 3.21–2.88 [23]
Methanol 0–80 0.43–0.56 3.18–3.13 [24]
Ethanol 0–100 0.46–0.57 3.04–3.08 [34]
Krypton 86–105 0.67–0.81 2.84–2.74 105–98 0.81–1.05 2.74–2.48 [26]
Ethylene 46–138 0.46–0.69 3.02–2.94 138–43 0.69–0.99 2.94–2.25 [28]

As summarized in table 2,our analysis reveals that there is no apparent correlation between
the type of liquid or the pressure range where the extreme condition occurs, although the
pressure range where the extrema are found rarely exceeds 100 MPa. In any case, despite this
rather erratic behaviour, table 2 allows us to extract some interesting conclusions. In general,
the condition (∂αp/∂T )p = 0 always occurs within a relatively narrow range of reduced
densities (between 2.2 and 3.5 times the critical density). In addition, the density at the
extreme in αp, ρα , always decreases with temperature, except for argon at high temperatures.
Furthermore, when minima are found in the αp isobars, these occur in a very narrow range of
density.

The above observations are summarized in figure 3 in reduced variables for all the liquids
studied here. It seems clear that there exists no apparent correlation between the pressure at
which the condition (∂αp/∂T )p = 0 occurs with other variables like the reduced temperature.
However, there exists an evident linear correlation between the reduced densities where that
condition is fulfilled and the reduced temperature. This result suggests the existence of a new
regularity in the behaviour of liquids not recognized to date, to the best of our knowledge.
Although this is not our purpose here, the linear relationship found in figure 3(b) might be
used to constrain the temperature and density dependencies of the characteristic parameters of
any EOS model intended to represent the (p, V , T ) surface of liquids. As mentioned above,
we are mainly interested in deriving a general model to reproduce the high-pressure behaviour
of the thermal expansion coefficient in an accurate manner. In this regard, the above discussion
indicates that a suitable EOS model must satisfy the condition (∂αp/∂T )p = 0 allowing for the
presence of both maxima and minima in the αp isobars. The consequences of this conclusion
are discussed in length in the following sections.

2.2. Constraints to an αp-based thermodynamic model for compressed liquids

In order to analyse the general observations described in the previous section, we shall start
examining the temperature derivative of the thermal expansion coefficient in equation (1):(

∂αp

∂T

)
p

= αp

[
1

α∗
dα∗

dT
+

1

2(p − psp)

d psp

dT

]
; (2)
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hence, the pressure at the extreme condition, pext (T ), is obtained from the condition
(∂αp/∂T )p = 0, i.e.,

pext (T ) = psp − α∗

2

d psp

dT

(
dα∗

dT

)−1

= psp − α∗

2

(
dα∗

d psp

)−1

, (3)

since both α∗ and psp depend only on temperature.
This formulation has the advantage that the dependence on temperature is included through

psp(T ), which has a well-known temperature behaviour [19, 20]. Thus, our model requires a
merit function to represent psp(T ). We shall make use of the proved relationship between psp

and surface tension [19, 21] to provide a suitable simple expression. Reid et al [2] compiled
a series of functional forms to account for the temperature dependence of surface tension. An
accurate expression that has proved successful in representing extensive experimental data [22]
is the following,

psp(T ) = pvap(T ) + p∗
[
(1 − T/TC)3ε

T/TC

]1/2

, (4)

where TC stands for the critical temperature and p∗ is an scaling pressure. The first term,
pvap, is the vapour pressure that is only important at temperatures very close to TC . Although
equation (4) is similar to other previously reported [2, 22], it has been modified to include
the explicit dependence on the scaling pressure p∗. Thus, in the following discussion it is
important to bear in mind that the spinodal pressure typically increases with temperature up
to the critical point. There are a few exceptions, like water, that show an uncommon reentrant
behaviour at low temperatures [16].

From equation (3), taking the second derivative of αp with respect to temperature, we
obtain,(

∂2αp

∂T 2

)
p

(pext , T ) = 1

[pext − psp]1/2

{
d2α∗

dT 2
+

1

α∗

(
dα∗

dT

)2

− dα∗

d psp

d2 psp

dT 2

}

= 1

[pext − psp]1/2

(
d psp

dT

)2[d2α∗

d p2
sp

+
1

α∗

(
dα∗

d psp

)2]
. (5)

We have found that α∗ always decreases with psp for all the liquids studied here, so the sign
on the second derivative of αp with temperature is driven by the first term into brackets. Thus,
if (d2α∗/d p2

sp) is positive, only minima are found in the αp isobars, while if (d2α∗/d p2
sp) is

negative, both maxima and minima can occur. This observation allows us to examine in terms
of equation (5) the suitability of the previous models proposed to represent αp(p, T ). We will
not consider polynomials like those proposed by Pruzan [17] and Randzio [18] because their
empirical nature.

One of the first expressions proposed in the literature to describe the behaviour of αp(p, T )

in compressed liquids is that due to Alba et al [13],

α∗(T ) = α0[p0 − psp(T )]0.5, (6)

which is a convex function on the temperature. This expression was derived assuming that
(α0, p0) represent the coordinates of a single crossing point for the αp isotherms of a liquid,
its generality is therefore rather limited. Ter Minassian et al [23] modified equation (6) to
correlate their experimental αp for liquid toluene using the following expression:

α∗(T ) = α0[p0 − psp(T )]2, (7)

where α0 and p0 do not define a single crossing point, but are only adjustable parameters. The
first and second derivatives with respect to psp are,

dα∗

d psp
= −2α0[p0 − psp(T )] and

d2α∗

d p2
sp

= 2α0. (8)



2986 M Taravillo et al

Table 3. Curvature of α∗(psp) and conditions for an αp extrema as a function of the parameter ω

in equation (10).

ω (d2α∗/d p2
sp) α∗(psp) Temperature range (∂2αp/∂T 2)p Extrema

0 < ω � 0.5 <0 Convex Ttp–Tc <0 Maxima
0.5 < ω < 1 <0 Convex Ttp < T >0 Minima

T < Tc <0 Maxima
�1 >0 Concave Ttp–Tc >0 Minima

Since α0 is defined positive, the algebraic form of equation (7) imposes that the αp isobars
must exhibit only minima (the intersections between isotherms are displaced to higher pressures
with increasing temperature), which again disagrees with our general findings. This is readily
confirmed from the corresponding expression for pext (T ):

pext (T ) = [p0 + 3 psp(T )]

4
, (9)

by noting that psp(T ) is an increasing function of the temperature.

2.3. An αp-based thermodynamic model for compressed liquids

In order to derive a general thermodynamic model for compressed liquids, we will consider
the following expression for α∗(psp),

α∗(T ) = α∗
0

[
1 + A

(
psp(T ) − pc

p∗

)ω]
. (10)

This model depends on four parameters: α∗
0 , A, p∗, and ω, which are always positive,

except p∗ and pc is the critical pressure of the substance. α∗
0 is the value of α∗ at critical

conditions, and p∗ is the scaling parameter for the spinodal pressure in equation (4). The
relevant parameter in equation (10) is the exponent ω that determines the curvature of α∗(T ).
Thus, from equations (5) and (10) it follows that the condition that determines the change in
sign of (∂2αp/∂T 2)p is:

A

[
psp − pc

p∗

]ω

= 1 − ω

2ω − 1
. (11)

Since the left-hand term in equation (11) is always positive, we may rationalize the
behaviour of αp(T ) only in terms of ω; there are three different scenarios, which are
summarized in table 3. Now, the pressure at the extreme condition, pext (T ), can be calculated
from:

pext (T ) = psp(T ) − [psp(T ) − pc]

2ω

[
1 +

1

A

(
psp(T ) − pc

p∗

)−ω]
, (12)

which may correspond to both maxima or minima in αp(T ).
The αp-based EOS is therefore expressed by equations (1), (4) and (10), and it depends

only on five parameters: p∗, ε, α∗
0 , A and ω. We have correlated available experimental data of

αp(p, T ) to equations (1), (4) and (10) for a number of liquids. The characteristic parameters
for several liquids are listed in table 4, together with absolute standard deviations of the fit
from experimental values of αp(p, T ). An interesting result is that the parameter A can be
fixed to unity without loss of accuracy for those experiments correlated using equations (6)
and (7). In such a case, our model fits the experimental data with a comparable quality using
the same number of characteristic parameters. In addition, we have found that the exponent ε
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Figure 4. Thermal expansion coefficient of liquid xenon along (a) isothermal and (b) isobaric
paths. Symbols are experimental results taken from Streett et al [27]. Curves are results calculated
from our model using the characteristic parameters listed in table 4 and Tc = 289.74 K.

Table 4. Characteristic parameters of our αp(p, T ) model (equations (1), (4) and (10)). Standard
deviations (SD) from experimental data are listed on the last column.

Liquid References p∗(MPa) 3ε α∗
0 (MPa0.5 kK−1) A ω SD(kK−1)

Argon [25] −170.6 ± 10.4 3.90 ± 0.09 23.10 ± 0.03 2.70 ± 0.44 1.74 ± 0.06 0.05
Krypton [26] −203.8 ± 7.0 3.91 ± 0.05 17.25 ± 0.04 0.95 ± 0.08 0.94 ± 0.03 0.06
Xenon [27] −207.7 ± 4.7 3.89 ± 0.03 12.42 ± 0.03 0.63 ± 0.02 0.59 ± 0.02 0.08
Ethylene [28] −181.5 ± 3.4 3.58 ± 0.03 13.56 ± 0.02 0.83 ± 0.02 0.95 ± 0.01 0.04
CF4 [29] −135.6 ± 3.6 3.26 ± 0.04 16.12 ± 0.03 0.58 ± 0.02 0.86 ± 0.02 0.08
Si(CH3)4 [15] −122.5 ± 5.8 3.05 ± 0.11 6.04 ± 0.76 1.14 ± 0.25 0.57 ± 0.10 0.01
2, 3-dimethyl- [33] −207.6 ± 13.8 4.16 ± 0.18 4.46 ± 0.78 2.23 ± 0.53 0.57 ± 0.08 0.01

butane
Toluene [23] −220.6 ± 2.6 3.48 ± 0.02 7.42 ± 0.01 0.85 ± 0.01 1.26 ± 0.01 0.01
Methanol [24] −140.7 ± 6.9 2.01 ± 0.14 8.85 ± 0.26 0.46 ± 0.08 1.16 ± 0.04 0.01
n-hexane [17] −201.6 ± 1.7 3.65 ± 0.01 6.89 ± 0.02 1 0.78 ± 0.01 0.05
n-hexane [18] −200.3 ± 1.5 3.64 ± 0.01 6.97 ± 0.01 1 0.79 ± 0.01 0.05
1-hexanol [35] −205.7 ± 6.7 2.92 ± 0.06 4.86 ± 0.03 1 0.18 ± 0.01 0.01
m-cresol [36] −190.4 ± 11.4 2.31 ± 0.12 5.29 ± 0.09 1 0.50 ± 0.02 0.01
Quinoline [37] −214.5 ± 12.9 2.95 ± 0.15 5.42 ± 0.16 1 0.89 ± 0.05 0.01

is close to unity for all the liquids studied. This result confirms the physical meaning of the
characteristic parameters included in our model, as concluded from previous surface tension
correlation schemes [2, 21, 22].

A comparison of the quality of our model to account for both temperature and pressure
variations of αp(p, T ) is illustrated in figure 4 for xenon over the whole liquid range. The
global agreement with the experiment is quite remarkable, especially along the isobaric paths.
Deviations are observed only in the vicinity of the critical point due to the expected divergence
of αp as the critical point (which is the only stable point of the spinodal curve) is approached.
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3. Conclusion

We have analysed the general behaviour of the thermal expansion coefficient, αp , as a
function of pressure and temperature for a number of liquids. Our analysis suggests that
the condition that the isotherms of αp present intersections at high pressure is not sufficient to
derive thermodynamic models for compressed liquids of general applicability, as previously
suggested. We therefore conclude that the relevant information concerns whether the
intersections of the αp(p) isotherms shift with temperature or not, and in which direction.
On this basis, existing models for αp(p, T ) have been criticized, and we have proposed an
αp-based model that meets the desired features. Our model depends only on five parameters.
The number of adjustable parameters can be reduced to three by fixing to unity both A and ε in
our correlation scheme when experimental data are available in narrow ranges of temperatures.

Finally, we must emphasize that our model is applicable to any liquid showing the typical
behaviour of αp(T ) at room pressure, namely, to increase with temperature. Of course, there
are well-known exceptions to this rule. Besides water, other liquids like toluene [23] or
methanol [24] exhibit minima in αp at temperatures close to the solidification line. For these
liquids specific merit functions for the temperature dependence of the characteristic parameters
in equation (1) are required to acquire quantitative results at low temperatures.
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[21] Rubio J E F, Baonza V G, Cáceres M and Núñez J 1994 Ber. Bunsenges. Phys. Chem. 98 960
[22] Jasper J J 1972 J. Phys. Chem. Ref. Data 1 841
[23] Ter Minassian L, Bouzar K and Alba C 1988 J. Phys. Chem. 92 487
[24] Taravillo M 1999 PhD Thesis Universidad Complutense de Madrid
[25] Streett W B 1974 Physica 76 59
[26] Streett W B and Staveley L A K 1971 J. Chem. Phys. 55 2495



Thermodynamic regularities in liquids: I 2989

[27] Streett W B, Sagan L S and Staveley L A K 1973 J. Chem. Thermodyn. 5 633
[28] Calado J C G, Clancy P, Heintz A and Streett W B 1982 J. Chem. Eng. Data 27 376
[29] Rubio R G, Calado J C G, Clancy P and Streett W B 1985 J. Phys. Chem. 89 4637
[30] Rubio R G, Zollweg J A and Streett W B 1989 Ber. Bunsenges. Phys. Chem. 93 791

Rubio R G, Zollweg J A, Polanco J M G, Calado J C G, Miller J and Streett W B 1991 J. Chem. Eng. Data 36
171

[31] Tomaszkiewicz I and Ter Minassian L 1988 J. Phys. Chem. 92 6824
[32] Muringer M J P, Trappeniers N J and Biswas S N 1985 Phys. Chem. Liq. 14 273

Sun T F, Bominaar S A R C, Ten Seldam C A and Biswas S N 1991 Ber. Bunsenges. Phys. Chem. 95 696
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